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Quantum Theoretical Origin of Spacetime Structure 
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The possibility that macroscopic spacetime is defined by the observable structure 
of the simplest nontrivial quantum systems is investigated. 

The basic claim of this paper is that modem physics has already 
uncovered a theoretical explanation for the observed structure of spacetime: 
such structure is a necessary consequence of the mathematical structure of 
quantum theory applied to the simplest nonstationary systems the theory 
allows. 

Before going into details, a hypothetical example from the early part 
of this century might be helpful in clarifying the type of argument to be 
used. Suppose that after Einstein's discovery that an indefinite metric was 
necessary in physical theory, it had further been found that the mathematical 
structure of such metrics required a minimum of four dimensions with a 
3-1 splitting. Surely such a circumstance (contrafactual, of course) would 
have been taken as an explanation of the basic geometric structure of 
spacet imeian example of Wigner's "unreasonable effectiveness of mathe- 
matics." As in all physical explanations, the basic question would merely 
have been transferred to a deeper level (why indefinite metric?), but with 
this proviso we could legitimately claim to have an explanation for the 
dimensionality and signature of spacetime. Now while, in fact, indefinite 
metrics do not impose such dimensional and signature restrictions, it is the 
aim of this paper to show that the mathematical structure of quantum 
theoryIcomplex projective space (ray space)--does impose precisely such 
restrictions on the observable properties of the simplest systems the theory 
allows. 
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To see this most clearly, I will work in the projective space formulation 
of quantum theory: pure states of  physical systems correspond to one- 
dimensional subspaces of  a complex Hilbert space ~,  and so can be 
represented as complex one-dimensional projection operators on ~. The 
standard density operator representation for arbitrary states (pure and 
statistically mixed) is then formed by taking convex linear combinations of  
such projections, so that the full set of  states for a physical system is the 
real manifold of  positive trace 1 operators W on YE. Observables correspond 
to self-adjoint operators A on g ,  and the results of  experimental measure- 
ments of A on a state W are predicted as an average value 

(A) w = trace(A W) 

with uncertainty (standard deviation) 

A A w  = [trace(A 2 W) - trace2(A W)] 1/2 

Finally, elementary dimensional computations easily show that, if N is the 
complex dimension of ~,  the dimension of the real vector space s4 of 
self-adjoint operators (observables) is N 2, while the dimension of the real 
nonlinear submanifold 5 r of  positive trace 1 operators (states) is N 2 -  1. 

From these simple considerations alone a striking difference between 
classical and quantum theory appears: the mathematical structure of  
classical theory imposes no dimensional restrictions on the systems that can 
be treated by the theory, while quantum theory specifies a discrete sequence 
of dimensions for spaces of  system observables and submanifolds of  system 
states. It might be objected that, since standard treatments embed every- 
thing in an infinite-dimensional Hilbert space and consider all observables 
and density operators as acting on that space, all such finite~dimensional 
distinctions are irrelevant, but this objection is misleading. I have presented 
arguments elsewhere (Marlow, 1984) against the automatic assumption of 
infinite-dimensional space as the basic representation space for quantum 
theory, but even granting the representat ion of all states and observables 
as operators on such a space, the objection fails. I f  the evolution of ag iven  
system is such that its states W are confined to a finite-dimensional submani- 
fold of  the infinite-dimensional manifold of  positive trace 1 operators, then 
there exists a finite-dimensional projection operator P with the property 
P W  = WP = W for all states W of the system, and all infinite-dimensional 
observables A' "compress"  to a finite-dimensional subspace of observables 
of the form A = P A ' P  insofar as any measurable predictions for the given 
system are concerned. This follows, of  course, from pZ= p (idempotence 
of projections) and the properties of  the trace function: t r a c e ( A ' W ) =  
t race (A ' (PWP)  = t r a c e ( P A ' P W ) = t r a c e ( A W ) .  Thus we are back to con- 
sidering the finite-dimensional spaces of  observables on finite-dimensional 
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manifolds of states allowed by the mathematical structure of quantum 
theory. 

Purely mathematically, the simplest case permitted by quantum struc- 
ture corresponds to complex dimension 1 ( W = C  itself), with one- 
dimensional real space of observables isomorphic to R, but zero-dimensional 
state manifold consisting of  the single pure state operator 1, reflecting the 
fact that complex one-dimensional space serves to define a zero-dimensional 
complex projective space consisting of a single ray. Whatever speculative 
role such a single-state system might play in theory, it should have no part 
in observational physics, since measurements depend crucially on the results 
of changes of state. Hence, I refer to this case as the trivial or one-point 
system. 

The simplest nontrivial physical system permitted by the mathematical 
structure of  quantum theory, then, is defined by complex dimension N = 2 
(W = C2), with a real four-dimensional space of observables A and a real 
three-dimensional submanifold of states W. To see how this is isomorphic 
to the standard Dirac 4-spinor formalism for spin-�89 systems, first note that 
the standard treatments work with a complex four-dimensional column 0 
and row ~b + representation of  states, so that W = $0  § and $+0 defines the 
Hermitian inner product on this representation of states. As always, such 
a decomposition of the state representation introduces an ai'bitrary phase 
factor; in terms of the unique positive square roots of our positive state 
operators W, we may define 

~0 = W1/2 eJS 

where S is a scalar and J is any operator such that j 2 =  _/ ,  j + =  _ j  (a 
complex structure operator, which, it should be emphasized, need not be 
identical with the complex structure i used to define the complex field C 
of  our underlying Hilbert space). Thus, 

W = 4'0 + 

and the expression for expectation values becomes 

trace(A W) = trace(AqJ~0 +) = trace(O+Aqt) 

To get the standard complex column 4-spin.or representation of 0, we need 
only note that the unit imaginary j, defined on states by jW = WJ, commutes 
with any left multiplication by operators, i.e., 

AjW =jAW 

so that, in terms of the complex numbers defined by j, any ~0 can be expressed 
as a column of  complex coefficients relative to a basis for the self-adjoint 
operators A, say I and the three standard Pauli o- operators (defined using 
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the original unit imaginary i). In terms of this same basis, of course, the 
linear operator on ~0 defined by left multiplication with a general self-adjoint 
operator A is represented as a 4 •  matrix, and allowing the abuse of 
notation of writing the same symbols for the operators A, ~, and their matrix 
representations, the expectation value formula becomes 

O+Atp = trace(qJ+A~0) = trace(A W) 

where ~ ranges through a four-parameter submanifold of j-complex 
4-spinors. 

To complete the demonstration that the simplest nontrivial systems 
allowed by the mathematical structure of quantum theory are isomorphic 
to the standard Dirac 4-spinor systems, we need to investigate the symmetries 
of the expectation value formula to show that they give the observed 
relativistic and gauge symmetries of standard theory. To preserve the self- 
adjointness and complex i-linearity of all observables A and states W, as 
well as all expectation values, we have 

trace(AW) = trace(S +-IAS-1SWS +) 

where S ranges through the group GL(2, C) x GL(2, C) of invertible i- 
linear-antilinear transformations on C 2. To express this group clearly as 
well as for later study of the differentiable structure of the manifold of 
states (and to distinguish the fundamental complex structure i from the 
complexification j, which is an artifact of the physicist's practice of using 
homogenous coordinatizations for complex projective structures), it is 
necessary to make explicit the underlying real structure of the complex 
Hilbert space C2: 

C 2 : { R  4, i} 

i.e., complex 2-space is real 4-space equipped with a complex structure 
operator i, expressed relative to the usual coordinates as (010 

1 0 0 

i =  0 0 0 - 

0 0 1 

Then our symmetry group consists of two disconnected components in the 
group GL(4, R) of all real, invertible 4 x 4 matrices: the subgroup GL(2, C) 
of C-linear elements S, commuting with i, and GL(2, C), consisting of all 
elements S' that anticommute with i (anti-C-linear elements). This second 
component is not a subgroup of GL(4, R), since products of two elements 
are /-linear, but has the simple structure 

GL(2, C)= y4GL(2, C) 
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that is, every element can be expressed as S ' =  y4S, with S in GL(2, C) and 
3'4 some fixed element anticommuting with i, conveniently chosen as (:001 

0 1 0 
Y4 = -1  0 0 

- 0 0 0 

Defining 3`4__ +' 3`4 = 3 ' 41 ,  it is conventional in standard treatments of Dirac 
4-spinors to incorporate this operator into the representations of states and 
observables by the prescriptions 

I~ = I]I+3' 4, 3 ' a =  3'4A 

so that the expectation value formula becomes 

(A) w = (A)+ = 03"A 0 = O+AO = trace(AW) 

(It has become even more conventional to incorporate the complexification. 
j by defining the operator 3'o on 4-spinors qJ as 3`00 =j3`4~0 = 3`4qJJ; this 
makes 3'0 a j-self-adjoint operator on 4-spinors, but for the moment I will 
forego this extension as an unnecessary intrusion of the complexification 
j. It amounts to the choice of relativistic spacetime signature + - - -  over 
signature - + + + . )  

Now defining Co as the complex group based on i (all nonzero complex 
numbers e~ one can further decompose G = GL(2, C) x GL(2, C) into 
the product 

GL(2, C) x 3`4GL(2, C) = Co x SL(2, C) x 3,4((:70 x SL(2, C)) 

Temporarily setting aside the group Co of  complex scalars, the fact that the 
nonscalar symmetry group of  the simplest quantum systems is SL(2, C) 
should strike one as highly significant, given the important role of that 
group in modern physics: applied to the real 4-space of observables A, the 
elements S of  SL(2, C) define exactly the restricted Lorentz group of 
physical boosts and rotations, using the definition 

LsA = S+ AS 

[Since S and - S  both define the same Lorentz transformation, one arrives 
of course at the usual description of SL(2, C) as the twofold covering group 
of  the restricted Lorentz group.] 

Lacking any other known physical interpretation of SL(2, C), we are 
compelled to adopt the standard interpretation of this group as it applies 
to the simplest systems permitted by the structure of quantum theory. Thus, 
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of the six standardly chosen independent generators of  SL(2, C), the three 
that are i-self-adjoint and anticommute with 3'4, ( 0100 

0"1---- 0 0 

1 0 

0 - 1  
0-2 = - 1  0 

0 0 ( 001 0 
0-3 = 0 - 1  

0 0 - 

[the standard Pauli matrices, expressed here in full real 4 x 4  form as 
elements of GL(4, R) instead of the usual more compressed complex 2 x 2 
notation], as observables must be interpreted as representing the three usual 
independent directions of  observed physical space along which systems and 
observers may be boosted, while the three anti-self-ad]oint generators, i0-1 = 
0"20"3, io-2=o-~o-1, and i0-3=0-10"2, commuting with 3'4 and generating i- 
unitary transformations, obviously must correspond to the orthogonal planes 
of  rotation allowed by observed physical space and axially define the same 
three observable directions as the boosts. 

Besides their role as generators of  Lorentz transformations on the 
simplest quantum systems, the operators 0-k defined above serve as three 
elements of  a complete basis for the real 4-space of observables on such 
systems. The fourth basis element,  100 ) 

0 1 0 
0 - ~  0 0 1 

0 0 0 

obviously has distinguished characteristics: it commutes with every operator, 
and, under SL(2, C)-induced Lorentz symmetries, it transforms as the usual 
time-energy axis. To see this, first note that the elements R defining spatial 
rotations in SL(2, C) are /-unitary, with R § = R -1, while the boosts B are 
positive operators with B §  B. Thus the observable axis 0-0 is invariant 
under all spatial rotations 

Ro'o R+ = RR-l  O-o = 0-0 
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while transforming under boosts to 

Writing boosts 
resentation, 

where 

Boo B+ = BB+0-o = B20-o 

in SL(2, C) in the standard 

B = exp[(o/2)0-o~] 

we have 

so that 

velocity parameter rep- 

t ro .= (sin ~p cos 0)0-1+ (sin ~p sin 0)0-2+ (cos ~o)0-3 

B 2 = exp(o0-0~) 

B0-oB += B20-o --- (cosh 0)0-0+ (sinh o)o-0~ 

as required of  the time-energy axis in observable 4-space, where u = tanh o 
defines the standard relativistic speed change involved in the boost. 

In the usual treatment of Dirac 4-spinor systems, incorporating the 
i-antilinear element 3'4 (or j3"4 = 3,o), since for arbitrary SL(2, C) elements 
S one has 

the observables 

3"4S + = S-13"4 

3"A = yaA = A~'y40-. = A~'7~ 

obviously transform as 

3"A' = y4S+ A S  = S-13"4AS = S - 1 3 " A s  

while the conjugate spinors tp transform as 

~fft= [/t+S+3'4 = 1//3'4S--1 ~--. ~ffS--1 

Thus, the role of the distinguished time-energy observable axis 0-0 = I is 
taken over by 3,40-0 = 74, but the physical content is identical in either 
representation, and the observables on the simplest nontrivial quantum 
systems transform as relativistic 4-vectors under the Lorentz transformations 
defined by SL(2, C).  

Since the simplest nontrivial quantum systems intrinsically exhibit the 
observational structure standardly associated with relativistic spacetime, 
assuming that our environment is populated with such systems and that the 
only meaningful operational definition of  a point or event in spacetime is 
in terms of observations made on a quantum system "occupying" the point, 
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there is no mystery about the origin of the observed structure of spacetime: 
each elementary system defines a local Minkowski 4-space observable 
structure, and collections of such systems, treated according to standard 
many-particle methods, should exhibit the macroscopic structure of a mani- 
fold obtained by gluing together local Minkowski structures, i.e., an Ein- 
steinian pseudo-Riemannian manifold. The precise mathematical treatment 
of such ensembles of elementary quantum systems is at present being 
formulated by the author, but the general idea should be clear: local 
Minkowski structure is well explained by systems that individually exhibit 
such structure in their space of observables. 

To get some tentative indication as to how such a quantum theory of 
spacetime might be elaborated, first assume the most general form of system 
representation that implements the present assumption that the macroscopic 
world is built up from observations made on ensembles of the simplest 
nontrivial quantum systems: require that the density operator representing 
such an ensemble be of the form of a convex linear combination 

W=yp.W. 
rl 

where p. represents the classical probability of detecting the nth system 
and each operator IV. has the form 

w .  = q. I•.><q, ol + ( 1  - q.)(I. -I~~ 
with I .  a complex two-dimensional (real four-dimensional) projection, I~O.) 
a complex unit vector varying through the range of I. ,  and q. a number 
specifying the classical probability of detecting the state corresponding to 
It/,.). Thus, in terms of the standard polarization vector for the pure state I q'.) 

~o -- 2lq'.)(q'.l- Io 

with ]~b.)(q,.] =�89 +~r.), we have 

W. = q./2(I. +~.)+(1 -q . ) /2(I .  - ~ . )  

= �89 + r . ~ . )  

with r. = 2 q . -  1. Obviously, as Iq'.) runs through all unit vectors in the 
range of I. ,  the operator ~r. varies over the unit 2-sphere of traceless 
self-adjoint operators with square I..  This is, of course, just a simple 
statement of the proof that complex one-dimensional projective space is 
isomorphic to the real 2-sphere. Hence, in terms of copies O'.k of the standard 
Pauli operators, defined now separately on the real four-dimensional range 
R4. of each projection I. = O-.o, it is possible to use the polar angle representa- 
tion specified earlier to write the possible states of the subsystems of the 
ensemble as 

W.(r., 0., ~o.)= �89 r.o-.(0., ~o.)) 
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where, since q. ranges from 0 to 1, r. ranges from -1  to 1. Thus, to determine 
the ensemble W completely it is necessarily to specify the four parameters 
p. ,  r., 0.. ~. for each subsystem W., where the last three variables may be 
chosen independently for each n, while the p. are tied together by the 
requirement that E Pn = 1. Such a system can be described as a quantum 
gas made up of  one-dimensional complex projective space systems. 

Placing no restrictions on the observables available to an observer other 
than the requirement of general quantum theory that they be self-adjoint 
operators A on some Hilbert space containing the observed system, one 
obtains from the expectation value formula 

fi~w = ~ p. trace(AWn) = Y~ p .  t r a c e ( I . A I . W . )  
r n  n 

where the compressed operator An = InAI~ = ~rnoAcr.o is an observable in 
the 4-space defined by the nth subsystem: 

A. = A~o-~. (summation over ~ = 0, 1, 2, 3) 

Hence, as far as an observer can determine from any information allowed 
by quantum theory, there is no loss of  generality in assuming pairwise 
orthogonality for the system projections I. ,  i.e., 

and an orthogonal direct sum structure for all observables: 

A = E  A.  
n 

since there would be no observational way of distinguishing the simple 
structure postulated here from any other that might be assumed. (More 
specifically, observable structures and possible relations among system 
projections In split into equivalence classes of  observationally indistinguish- 
able alternatives, from among which we have made a particularly simple 
choice. If further restrictions on observers or interactions between subsys- 
tems were assumed, some other structural choice might be more appropriate, 
but until such assumptions are made explicit, there is no reason to change 
the choice made above.) 

Thus, general observables reduce equivalently to direct sums of 4-vector 
observables A.  on subsystems, and since, by hypothesis, the parameters Pn 
in the general density operator ,  W represent classical probabilities (in 
principle arbitrarily refinable), a sophisticated observer with extensive 
experience of the system could reduce all but one of these probabilities 
essentially to zero, and so study the 4-vector structure of the individual 
subsystems. Such an observer could go on to uncover the privileged status 
of  the "time-energy" observable axis In for each subsystem, with its constant 
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expectation value, and learn to fix one such axis as origin for difference 
"coordinate" observables A,, - I ,  describing other subsystems. The observer 
would, of course, find that all such coordinate vectors could vary only along 
four independent directions, and thus the picture of a four-dimensional 
background space in which all systems were imbeded would emerge. The 
investigation of  precisely how the full relativistic worldview could arise is 
still in progress, and so I end my sketch of observables on a simple quantum 
gas here, but enough has been said to emphasize the main point: whatever 
structure is assigned to observers, the mathematics of quantum theory 
imposes strong system-dependent restrictions on the possible results of 
observations, so that assuming our world is largely populated with the 
simplest quantum systems inevitably leads to the 4-space structure 
uncovered by actual experience. (For comparison with standard relativistic 
treatments, Of course, 'Y4n operators must also be incorporated, as detailed 
earlier.) 

Just as with SL(2, C), the remaining complex scalar component Co of 
the symmetry group GL(2, C) can be given the standard interpretation. The 
compact part U(1)={ei~}, treated as a gauge group, with e an extra 
coordinate over and above the 4-space defined by system observables 
(including of course the self-adjoint state operators) gives rise to a 4- 
potential form ~o and a corresponding antisymmetric field strength F = dw, 
so that electromagnetic interactions have a natural place in a model of  
spacetime based on the simplest quantum systems. The noncompact com- 
ponent of positive reals {e p} would then serve as the standard normalization 
factor of the usual treatments. 

Finally, suppose everything above were agreed upon. What difference 
would it make ? After all, quantum theory has done quite well in its 60-year 
history by having macroscopic spacetime simply put in by hand as a classical 
substrcuture over which wave functions, operators fields, etc., exist. Would 
a model that derives spacetime structure as a property of the simplest 
quantum systems be expected to offer any new insights, predictions, or 
directions for research? Clearly, yes. Any th6ory deriving spacetime from 
quantum substructure would be expected to have within itself the means 
of relating curvature of the resulting spacetime to properties of the substruc- 
ture, say some measure of quantum system density, and thus of giving a 
testable quantum theory of gravitation. Another direction for thought is 
implicit in even the oversimplified model outline above: if spactime is an 
epiphenomenon of observations made on a universe abounding with the 
simplest quantum systems, then more complicated quantum systems should 
live in our observed spactime only to the extent that they are embedded in 
a sea of the simplest systems. This fits well with the best theory we have 
for ordinary matter as clumpings of elementary systems (electrons) around 
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cores of more complicated quantum systems (nucleons). It seems especially 
intriguing that the next most complicated systems allowed by quantum 
theory, based on a complex projective. 2-space of pure states, have nine- 
dimensions for their space of observables (with an 8+1 splitting) and 
transformation group GL(3, C) containing SU(3) as special unitary sub- 
group. Thus, even the simplest model of the type proposed gives an explana- 
tion for why nuclear matter, when isolated in the form, say, of a neutron 
star, starts exhibiting the behavior of a singularity in the structure of ordinary 
spacetime: such matter essentially lives in higher dimensions, and cannot 
be fitted smoothly into four dimensions. In any case, with all the expected 
advantages from a theory that presents spacetime as an explained 
phenomenon rather than simply an assumed necessity, it seems clear that, 
before writing off the structure of the simplest quantum systems as mere 
coincidence, we should thoroughly investigate the possibility that such 
systems define the overall structure of the observed universe. 
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